
Homework 7:
SkipGram (Word2Vec)

Dr. Benjamin Roth
Computerlinguistische Anwendungen

Due: Friday June 01, 2018, 16:00

In this homework you will implement training word vectors using stochastic gradient
descent. You can check your progress using unit tests:
python3 -m unittest -v hw07_skipgram/test_skipgram.py

Exercise 1: Defining the Vocabulary [2 points]

Complete the function vocabulary_to_id_for_wordlist(word_list, vocab_size) in
the file utils.py. It returns a dictionary which maps the vocab_size most frequent
words in a word list to a number (= their row in the embedding matrizes).

Exercise 2: Logistic Sigmoid Function [2 points]

Complete the function sigmoid(x) in the file utils.py. It calculates the logistic sigmoid
function. Make sure you understand how the sigmoid function can be used to turn dot
products of vectors into probabilities.

Exercise 3: Creating the Training Instances (Tuples) [6 points]

Complete the function positive_and_negative_cooccurrences(...) in the file utils.py.
It takes a corpus (list of words), and returns a generator of trainings triples of the form
(target_word_id, context_word_id, Label), as discussed in the lecture.

• The training corpus contains the positive instances as co-occurrences of one
target word and several context words surrounding it, as in the previous homework.
They are tuples of the form:
(target_word_id, context_word_id, True)

• The negative instances are obtained from the positive instances by adding addi-
tional word pairs where the context word id is replaced with a random id uniformly
sampled from the entire vocabulary size (you can use random.randint(...)). They

1



are tuples of the form:
(target_word_id, random_word_id, False)

• Use the yield statement to return a generator over the training instances. 1

Exercise 4: Performing a Gradient Update [6 points]

The class SkipGram will perform training on the positive and negative tuples. Understand
how its members are initialized, and how one training iteration over all instances is called
from train_iter.
Your task is to complete SkipGram.update(...) which performs an update for one

training instance.

• First, calculate prob_pos, the probability P (True|context, target) that a word is
a positive co-occurrence from the corpus. Check the lecture materials, how this
probability is calculated, and how it is used in the updates.

• Update the context and target embedding matrices according to the update rule
from the lecture. ATTENTION:

– When obtaining a vector from a Numpy matrix using indexing (v=m[i,:]),
this vector is backed by the matrix: Any change to the matrix will be reflected
in the vector, and vice versa.

– Since you need to perform two updates (context and target embedding), one
vector would have changed after the first update.

In order for the updates to work correctly, you must use the unchanged vector
for the second update. Use v2 = numpy.copy(v) to get a vector that is not
backed by the matrix.

Exercise 5: Similarity on the Brown corpus

If you have implemented all functionality, you can train the skipgram model on the Brown
corpus by calling:
python3 -m hw07_skipgram.interactive_skipgram_similarity
Since we optimized our implementation for readability, rather than for speed, it is very

slow and training may take up to 20 minutes.
If you want to train skipgram embeddings on larger corpora, you should use an op-

timized implementation such as gensim https://radimrehurek.com/gensim/models/
word2vec.html.

1If you don’t remember the functionality of the yield statement check the lecture sileds on “Iteratoren,
Generatoren, List Comprehensions” of last semester’s “Symbolische Programmierspache”.

2


