
Homework 3:
Paraphrase Recognition;
Matrix Representations

Dr. Benjamin Roth
Computerlinguistische Anwendungen

Due: Friday, May 4, 2018, 16:00

In the first exercise, you will use the perceptron to implement a paraphrase classifier
and design some features for that. In the second exercise, you will practice the use of
Numpy arrays and the Scikit-Learn CountVectorizer.

Exercise 1: Paraphrase Detection with the Perceptron

Download the paraphrases corpus (paraphrases.tgz ) from the course homepage. Have a
look at the training, development and test files. They contain pairs of (tab-separated)
tweets and a label of the tweets being paraphrases, or not.
Take a look at the file paraphrases.py. In this script, your existing perceptron imple-
mentation is used to solve the paraphrase detection task. To make it work, you need to
complete some functions, which you can verify with unittests:
python3 -m unittest -v hw03_paraphrases/test_paraphrases.py

Exercise 1.1: Token N-grams [2 Points]

Complete the function token_ngrams. Given a list of tokens, the function should return
a list of all ngrams (n consecutive tokens). Each ngram is a string, the concatenated
tokens, separated by whitespace (" ").
Attention: The function should not only work for 3-grams, instead the function should
use the parameter n as a generic number.

Exercise 1.2: Token Features [1 Points]

Complete the function token_features. Given two sets of tokens (without repetitions)
A and B, the following features should be added to a new dictionary:

• features[WORD_OVERLAP]: The number of tokens common to both sets (the inter-
section A ∩B)

1



• features[WORD_UNION]: The number of tokens in the union A ∪B

Then return the dictionary.

Exercise 1.3: Word Ngram Features [1 points]

Complete the function ngram_features. Given two sets of token ngrams, the following
features should be added to a new dictionary:

• features[WORD_NGRAM_OVERLAP]: The number of token 3-grams common to both
texts (the intersection of the sets).

• features[WORD_NGRAM_UNION]: The number of token 3-grams in the union of both
sets.

Then return the dictionary.

Exercise 1.4: Character Ngram Features [1 points]

Complete the function ngram_features. Given two sets of character ngrams, the follow-
ing features should be added to a new dictionary:

• features[CHARACTER_NGRAM_OVERLAP]: The number of character 3-grams common
to both texts (the intersection of the sets).

• features[CHARACTER_NGRAM_UNION]: The number of character 3-grams in the union
of both sets.

Then return the dictionary.

Exercise 1.5: Wordpair Features [1 points]

Complete the function wordpair_features. Given two sets of tokens, a feature for every
wordpair (u, v) should be added, where u appears in the first set of tokens, and v in the
second one. To represent each feature, use the symbol # as infix between u and v. (For
example, there are 4 wordpair features for {’hello’,’greetings’} and {’hi’,’bye’}, one of
which is hello#bye). Return a dictionary that maps each wordpair feature (for the
given token sets) to the value 1.

Exercise 1.6: Feature Comparison [0 points]

This exercise is a small check whether your features work with the real data. Call the
script from the src-folder with:
python3 -m hw03_paraphrases.paraphrases -t data/paraphrases/train.txt \
-d data/paraphrases/dev.txt -e data/paraphrases/test.txt
and see how it performs. You might be interested in how much each of your features

2



contributed to this result. For that, a feature comparison mode was implemented! Simply
add the flag -fc to the command above. This is also a great way to check if all of your
functions in the previous exercises on this sheet are working correctly. You should receive
something like this:

FEATURE COMPARISON MODE
−−−−−−−−−−−−−−−
Only wordpair f e a t u r e s
Dev acc : 0.6484789956542734
−−−−−−−−−−−−−−−
Only cha rac t e r ngram f e a t u r e s
Dev acc : 0.7349106711733462
−−−−−−−−−−−−−−−
Only word ngram f e a t u r e s
Dev acc : 0.6875905359729599
−−−−−−−−−−−−−−−
Only token f e a t u r e s
Dev acc : 0.739014968614196

. . .

Note that there are some non-deterministic parts in the code, so the scores may vary a
little bit! (You get points if your features work correctly with the dataset.)

Exercise 2: Numpy

Complete the following functions in small_functions.py. You can check your progress
using the doctests:
python3 -m doctest -v hw03_paraphrases/small_functions.py
and unittests:
python3 -m unittest -v hw03_paraphrases/test_small_functions.py

Exercise 2.1: Creating a 1d Numpy Array [4 points]

Complete the function square_roots(start,end,length), that returns a 1d (vector
shaped) numpy array with the specified length. It should contain the square roots of
equally spaced input values between start and end (both included). Look at the doctest
for an example.

Exercise 2.2: Creating a 2d Numpy Array [4 points]

Complete the function odd_ones_squared(rows, cols), that returns a 2d numpy array
with shape (rows, cols). The matrix cells should contain increasing integer values
(create a range and reshape), where all odd numbers are squared. Look at the doctest
for an example.

3


