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Embeddings

Definition

The embedding of a word w is a dense vector ¥(w) € R¥ that
represents semantic and other properties of w. Typical values are
50 < k < 1000.

» In this respect, there is no difference to WordSpace: Both
embeddings and WordSpace vectors are representations of
words, primarily semantic, but also capturing other properties.

» Embeddings have much lower dimensionality than WordSpace
vectors.

» WordSpace vectors are sparse (most entries are 0),
embeddings dense (almost never happens that an entry is 0).
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Word representations:
Density and dimensionality

WordSpace vectors are sparse and high-dimensional.

In contrast, embeddings are dense and lower-dimensional.

>
>
» Why are embeddings potentially better?
» Embeddings are more efficient.

>

Embeddings are often more effective.
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WordSpace vectors: Example for non-effectiveness

v

Example: polarity classification
Cooccurrence with “bad” indicates negative polarity.

But corpora are often random and noisy and a negative word
may not have occurred with “bad".

Possible result:
Incorrect classification based on WordSpace vectors

Embeddings are more robust and “fill out” missing data.

Details: below



Effectiveness of embeddings: Polarity
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Effectiveness of embeddings: Polarity
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Effectiveness of WordSpace: Thought experiment

» Construct an example of a corpus and two words wy and w»
occurring in it having the following properties:

> w; and w; are semantically related.
» The WordSpace vectors of wy and w», are not similar.

» Goal: Embeddings eliminate failure modes of WordSpace.



Best-known embedding model: word2vec skipgram

» word2vec skipgram is

» more effective than WordSpace

(embeddings and similarities of higher quality)
» more efficient than WordSpace

(lower dimensionality)



word2vec skipgram
predict, based on input word, a context word
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word2vec skipgram
predict, based on input word, a context word

BINARY
INDICATORS:
GOOD OR BAD

CONTEXT WORD

GIVEN embyro?
ONE-HOT
VECT:E)

aarhus |0 0.02]| aarhus
abacus || 0.00| abacus
abbey (0 0.01| abbey
car [@] 9.03] car
embryo [Tie embryo
fetus (@] fetus
offspring (0] offspring
shirt [@] shirt
zucchini [ zucchini
zwieback [@] zwieback
zygote | 0] zygote
INPUT CONTEXT
EMBEDDING EMBEDDING
of of

embryo zygote



word2vec
learning = parameter estimation

» The embedding of a word is a real-valued vector € RX.
» The coordinates are
parameters that we need to learn/estimate from the corpus.
» Learning of a WordSpace model:
(i) count, then (ii) PPMI weighting
» For word2vec, learning is more complicated.
> Two different methods

» Embeddings learned via matrix factorization
» Embeddings learned via gradient descent

» These estimation methods are roughly equivalent.



Example of an embedding vector:
The numbers (or coordinates) are the parameters.

embedding of the work “skunk’:

(-0.17823, -0.64124, 0.55163, -1.2453, -0.85144, 0.14677, 0.55626, -0.22915,
-0.051651, 0.22749, 0.13377, -0.31821, 0.2266, -0.056929, -0.17589,
-0.077204, -0.093363, 1.2414, -0.30274, -0.32308, 0.29967, -0.0098437, -0.411,
0.4479, 0.60529, -0.28617, 0.14015, 0.055757, -0.47573, 0.093785, -0.36058,
-0.75834, -0.37557, -0.32435, -0.39122, -0.24014, 0.5508, -0.26339, 0.30862,
0.36182, 0.25648, 0.10642, -0.098591, -0.042246, 0.11275, 0.068252,
0.092793, -0.12239, 0.054094, 0.648, 0.30679, -0.38904, 0.32872, -0.22128,
-0.26158, 0.48044, 0.86676, 0.1675, -0.37277, -0.53049, -0.13059, -0.076587,
0.22186, -0.81231, -0.2856, 0.20166, -0.41941, -0.60823, 0.66289, -0.059475,
-0.14329, 0.0091092, -0.52114, -0.31488, -0.48999, 0.77458, -0.026237,
0.094321, -0.50531, 0.19534, -0.33732, -0.073171, -0.16321, 0.44695,
-0.64077, -0.32699, -0.61268, -0.43275, -0.19378, -0.25791, 0.014448, 0.44468,
-0.42305, -0.24903, -0.010524, -0.26184, -0.25618, 0.022102, -0.81199,
0.54065)



word2vec
learning = parameter estimation

» The embedding of a word is a real-valued vector € RX.
» The coordinates are
parameters that we need to learn/estimate from the corpus.
» Learning of a WordSpace model:
(i) count, then (ii) PPMI weighting
» For word2vec, learning is more complicated.
> Two different methods

» Embeddings learned via matrix factorization
» Embeddings learned via gradient descent

» These estimation methods are roughly equivalent.



word2vec parameter estimation:
Historical development
vs. presentation in this lecture

» Mikolov et al. (2013) introduce word2vec, estimating
parameters by gradient descent.

» Still the learning algorithm used by default and in most cases
» Levy and Goldberg (2014) show near-equivalence
to a particular type of matrix factorization.
» Important because it links two important bodies of research:
neural networks and distributional semantics
» More natural progression in this lecture:
distributional semantics
— embedding learning via matrix factorization
— embedding learning via gradient descent



word2vec skipgram:
Embeddings learned via gradient descent
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word2vec parameter estimation:
Historical development
vs. presentation in this lecture

» Mikolov et al. (2013) introduce word2vec, estimating
parameters by gradient descent.

» Still the learning algorithm used by default and in most cases
» Levy and Goldberg (2014) show near-equivalence
to a particular type of matrix factorization.
» Important because it links two important bodies of research:
neural networks and distributional semantics
» More natural progression in this lecture:
distributional semantics
— embedding learning via matrix factorization
— embedding learning via gradient descent



word2vec skipgram:
Embeddings learned via matrix factorization

Neural Word Embedding
as Implicit Matrix Factorization

Omer Levy Yoav Goldberg
Department of Computer Science Department of Computer Science
Bar-Ilan University Bar-Ilan University
omerlevy@gmail.com yoav.goldberg@gmail.com

Abstract

We analyze skip-gram with negative-sampling (SGNS), a word embedding
method introduced by Mikolov et al., and show that it is implicitly factorizing
a word-context matrix, whose cells are the pointwise mutual information (PMI) of
the respective word and context pairs (shifted by a global constant). We find that
another embedding method, NCE, is implicitly factorizing a similar matrix, where
each cell is the (shifted) log conditional probability of a word given its context.



word2vec parameter estimation:
Historical development
vs. presentation in this lecture

» Mikolov et al. (2013) introduce word2vec, estimating
parameters by gradient descent.

» Still the learning algorithm used by default and in most cases
» Levy and Goldberg (2014) show near-equivalence
to a particular type of matrix factorization.
» Important because it links two important bodies of research:
neural networks and distributional semantics
» More natural progression in this lecture:
distributional semantics
— embedding learning via matrix factorization
— embedding learning via gradient descent



Dot product / scalar product
we = Z W;Cj
i
Example:

w1 1
wo . (o)) = wic1 + woCo + W3C3
w3 3



Linear algebra review: C = AB

B
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C11 = A11Bi1 + A12Boy
Ci2 = A11B12 + A12B2»
(o1 = A21Bi1 + A Boy
Co2 = A21B12 + A2 B2



Linear algebra review: C = AB
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C11 = A11B11 + A12Bo;
Cio = A11Bio + A12B2»
(o1 = A21Bi1 + A Boy
Coo = A21Bia + A Bo»
(31 = A31B11 + A32Bo
(32 = A31Bi2 + A32B2



Euclidean length of a vector d



¢ and d are orthogonal iff
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Exercise

VT di do d3 ds ds ds
1 -0.75 -0.28 -0.20 -0.45 -0.33 -0.12
2 -0.29 -053 -0.19 0.63 0.22 0.41
3 0.28 -0.75 0.45 —-0.20 0.12 -0.33
4 0.00 0.00 0.58 0.00 -0.58 0.58
5 —0.53 0.29 0.63 0.19 0.41 —-0.22

Show: column d; has unit length: |/>".d% =1

Show: columns di, d are orthogonal: > .dj - dp =0
0.752 + 0.29% + 0.28% + 0.00% + 0.532 = 1.0059

—0.75 % —0.28 + —0.29 * —0.53 + 0.28 * —0.75 + 0.00 x 0.00 +
—0.53%x0.29 =0



Exercise

VT d1 do d3 da ds de
1 -0.75 -0.28 -0.20 —-0.45 -0.33 -0.12
2 -0.29 -0.53 -0.19 0.63 0.22 0.41
3 028 —-0.75 045 -020 0.12 -0.33
4 000 0.00 058 000 -0.58 0.58
5 —0.53 0.29 0.63 0.19 0.41 —-0.22
Show: column d; has unit length: |/>".d% =1

Show: columns d, d are orthogonal: > .dj - dp =0



Outline of this section

» Recall:
We learn embedding parameters by matrix factorization.

We need an input matrix for matrix factorization.
Brief recap on how to create the input matrix
Also: link to information retrieval

This type of “technology” comes from information retrieval.

vVvYvyyvyy

Brief overview of information retrieval setting



Vector representations:
Words vs. Documents/Queries

» Statistical NLP & Deep learning:
Embeddings as model for word similarity

» Information retrieval:
Vector representations as model of query-document similarity

» Simple search engine:

» User enters query.

» Query is transformed into query vector.

» Documents are transformed into document vectors.

» Order document vectors according to similarity to query

» Return ranked list of documents to user:

The documents with highest similarity to query.



Basis for WordSpace: Cooccurrence— Similarity
rich
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The similarity between two words is the cosine of the angle
between them.

Small angle: silver and gold are similar. Medium-size angle: silver
and society are not very similar. Large angle: silver and disease are
even less similar.



Documents ranked according to similarity to query

automobile prices Q

All News Shopping Images Maps More Settings Tools

About 69,500,000 results (0.41 seconds)

Automobile aus Deutschland - 2,4 Mio. Gebraucht- & Neuwagen
Ad) www.autoscout24.de/auto/mobile v
4.3 %k k% rating for autoscout24.de
Jetzt schnell einfach & unkompliziert Autos aller Marken in lhrer Nahe finden.
g¢ ~Alle F ils - Kostenlos - Al i Service
Modelle VW Turan, Kia Sportage, BMW X1, Audi A3

AutoScout24 N N Fabrikneue Autos
from €8,000.00 from €10K from €12.5K
verschiedene Modelle verschiedene Modelle verschiedene Modelle

Kelley Blue Book - New and Used Car Price Values, Expert Car Reviews
https:/iwww.kbb.com/ ¥

Check KBB car price values when buying and selling new or used vehicles. Recognized by consumers
and the automotive industry since 1926.

Resale Value - Used Car Prices - New Cars - Motorcycles

NADAguides: New Car Prices and Used Car Book Values
https://www.nadaguides.com/ ¥

Research the latest new car prices, deals, used car values, specs and more. NADA Guides is the
leader in accurate vehicle pricing and vehicle information.

New Car Prices & Used Car ... - Motorcycles - RV Prices and Values - Trucks



Words ranked according to similarity to query word

1.000 silver 0.865 bronze 0.842 gold 0.836 medal 0.826 medals
0.761 relay 0.740 medalist 0.737 coins 0.724 freestyle 0.720 metre
0.716 coin 0.714 copper 0.712 golden 0.706 event 0.701 won 0.700
foil 0.698 Winter 0.684 Pan 0.680 vault 0.675 jump



Setup for cooccurrence count matrix
Dimension words (ws) and points/vectors (w;)

w2
rich poor silver society disease
rich
poor
wy  silver
society

disease



Cooccurrence count (CC) matrix

rich poor silver society disease

rich CC(Wl, Wg) CC(Wl, W2) ( ) ) CC(Wl7 W2)
poor CC(wy,wn)  CC(wy,ws) ( ) ( ) CC(wy,wy)
wy  silver CC(wi,wr) CC(wi,wa) CC(wi,wa) CC(wyi,wa) CC(wy,wn)
society | CC(wi,wz) CC(wy,ws) ( ) ( ) CC(wi,ws)
disease | CC(wy,wp)  CC(wy, wn) ( ) ( ) CC(wr,wy)



PPMI matrix C

This is the input to matrix factorization,

which will compute word embeddings.

Wy

rich poor silver society disease
rich PPMI(wy,ws)  PPMI(wi,ws) PPMI(wy,wp)  PPMI(wy,wy)  PPMI(wq, wy)
poor PPMI(wy, wz)  PPMI(wi,wa) PPMI(wi,wz) PPMI(wi,wa) PPMI(wg, ws)
wy  silver PPMI(wy,ws)  PPMI(wi,ws) PPMI(wy,wp)  PPMI(wy,wy)  PPMI(wq, ws)
society | PPMI(wi,w2) PPMI(wi,w2) PPMI(wi,wn) PPMI(wi,w2) PPMI(wi, wy)
disease | PPMI(wy,wz) PPMI(wy,ws) PPMI(wi,wa)  PPMI(wi,wz)  PPMI(wy, ws)



PPMI:

Weighting of raw cooccurrence counts

PMI: pointwise mutual information

PMI(w, ¢) = log F{)V(V;NPC()C)

PPMI =

positive pointwise mutual information
PPMI(w, c) = max(0, PMI(w, c))
More generally (with offset k):
PPMI(w, c) = max(0, PMI(w, c)—k)



Information Retrieval: Word-document matrix

docl doc2 doc3 doc4 docb query
anthony 5.25 3.18 0.0 0.0 0.0 0.35
brutus 1.21 6.10 0.0 1.0 0.0 0.0
caesar 8.59 254 0.0 151 0.25 0.0
calpurnia | 0.0 1.54 0.0 0.0 0.0 0.0
cleopatra | 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 190 012 525 0.88
worser 1.37 0.0 0.11 4.15 0.25 0




Matrix factorization: Overview

> We will decompose the word-document matrix into a product
of matrices.

» The particular decomposition we'll use: singular value
decomposition (SVD).

» SVD: C= ULV (where C = word-document matrix)

» We will then use the SVD to compute a new, improved
word-document matrix C.

> We'll get better query-document similarity values out of C
(compared to C).

» Using SVD for this purpose is called latent semantic indexing
or LSI. O



Matrix factorization: Embeddings

> We will decompose the cooccurrence matrix into a product of
matrices.

» The particular decomposition we'll use: singular value
decomposition (SVD).

» SVD: C= U VT (where C = cooccurrence matrix)

» We will then use the SVD to compute a new, improved
cooccurrence matrix C.

> We'll get better word-word similarity values out of C'
(compared to C).



Example of C = U V': The matrix C

C d dr d3 dy dy dg
ship 1 0 1 0 0 O
boat (O 1 0 O O O
ocean|1 1 0 0 O O
wood {1 O O 1 1 O
tree O 0o o 1 0 1

We use a non-weighted matrix here to simplify the example. O



Example of C = UL V': The matrix U

U 1 2 3 4 5
ship —0.44 —-0.30 0.57 0.58 0.25
boat | —0.13 —-0.33 —-0.59 0.00 0.73
ocean | —0.48 -0.51 -0.37 0.00 -0.61
wood | —0.70 0.35 0.15 —-0.58 0.16
tree —0.26 0.65 —-0.41 0.58 —-0.09

One row per word, one column per min(M, N) where M is the
number of words and N is the number of documents.

This is an orthonormal matrix: (i) Row vectors have unit length.
(ii) Any two distinct row vectors are orthogonal to each other.

Think of the dimensions as “semantic” dimensions that capture
distinct topics like politics, sports, economics. 2 = land/water

Each number uj; in the matrix indicates how strongly related word /
is to the topic represented by semantic dimension j. O



Example of C = UL V': The matrix ¥

1 2 3 4 5

216 0.00 0.00 0.00 0.00
0.00 159 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

g~ WD HEM

This is a square, diagonal matrix of dimensionality
min(M, N) x min(M, N).

The diagonal consists of the singular values of C.

The magnitude of the singular value measures the importance of
the corresponding semantic dimension.

We'll make use of this by omitting unimportant dimensions.

O



Example of C = U V'": The matrix V/

VT di d> d3 dy ds ds
-0.75 -0.28 -0.20 -0.45 -0.33 -0.12
-0.29 -053 -0.19 0.63 0.22 0.41
0.28 -0.75 0.45 —-0.20 0.12 -0.33
0.00 0.00 0.58 0.00 —-0.58 0.58
—0.53 0.29 0.63 0.19 0.41 —-0.22

Gl W N

One column per document, one row per min(M, N) where M is the
number of words and N is the number of documents.

Again: This is an orthonormal matrix: (i) Column vectors have
unit length. (i) Any two distinct column vectors are orthogonal to
each other.

These are again the semantic dimensions from matrices U and
that capture distinct topics like politics, sports, economics.

Each number v;; in the matrix indicates how strongly related
document i is to the topic represented by semantic dimension j. [



Example of C = UZV": All four matrices (unreduced)
C

dy dr d35 dy ds dp
ship 1 0 1 0 0 O
boat O 1 0 0 0 0 _
ocean|1 1 0 0 O 0
wood (1 O O 1 1 O
tree o 0 o0 1 0 1
Y 1 2 3 4 5 | 1 2 3 4 5

x
ship —0.44 —0.30 0.57 0.58 0.25 1216 0.00 0.00 0.00 0.00
boat | —0.13 —-0.33 —-0.59 0.00 0.73 2 10.00 159 0.00 0.00 0.00
ocean | —0.48 —0.51 —0.37 0.00 —-0.61 31000 000 1.28 0.00 0.00
wood | —0.70 0.35 0.15 —-0.58 0.16 4 10.00 0.00 0.00 1.00 0.00
tree —0.26 0.65 —0.41 0.58 —0.09 5 10.00 0.00 0.00 0.00 0.39
Vil 4 d ds da ds ds

1 —-0.75 —-0.28 —-0.20 —-0.45 -0.33 -0.12

2 —-0.29 —-0.53 -0.19 0.63 0.22 0.41

3 0.28 —0.75 0.45 —0.20 0.12 -0.33

4 0.00 0.00 0.58 0.00 —0.58 0.58

5 —0.53 0.29 0.63 0.19 041 -0.22

SVD is decomposition of C into a representation of the words, a representation of the
documents and a representation of the importance of the “semantic” dimensions.




SVD: Summary

» We've decomposed the word-document matrix Cinto a
product of three matrices: UX V.

» The word matrix U — consists of one (row) vector for each
word

» The document matrix V7 — consists of one (column) vector
for each document

» The singular value matrix ¥ — diagonal matrix with singular
values, reflecting importance of each dimension

> Next: Why are we doing this?

O



Property of SVD that we exploit here

> Key property:
Each singular value tells us how important its dimension is.
P> By setting less important dimensions to zero, we keep the
important information, but get rid of the "details”.

» These details may
» be noise — in that case, reduced SVD vectors are a better
representation because they are less noisy.
» make things dissimilar that should be similar — again, reduced
SVD vectors are a better representation because they represent
similarity better.

» Analogy for “fewer details is better”

» Image of a blue flower
> Image of a yellow flower
» Omitting color makes is easier to see the similarity O



Reducing the dimensionality to 2

u | 1 2 3 4 5 Actually, we
ship —0.44 —-0.30 0.00 0.00 0.00 0n|y zero out
boat —0.13 —-0.33 0.00 0.00 0.00

ocean | —0.48 —0.51 0.00 0.00 0.00 ?'”gmar ‘{alues

wood | —0.70  0.35 0.00 0.00 0.00 in 2. This has

tree | —0.26  0.65 0.00 0.00 0.00 the effect of

o |1 2 3 4 5 )

1 | 216 000 000 000 0.00 setting the

2 (000 1.59 0.0 0.0 0.00 corresponding

3 |0.00 0.00 0.00 0.00 0.00 dimensions in

4 000 000 000 0.00 0.00 T

5 | 000 000 000 000 0.00 Uand V" to

vT i d> ds ds ds ds Zero When
—0.75 028 —020 -045 —033 012 computing the
029 -053 -019 063 022 041 product C =

000 000 000 000 000 0.00 . B
000 000 000 000 000 0.00 Urv:. [
000 000 000 000 000 000

A wWwN =



Reducing

the dimensionality to 2
di d d3 4 ds

G d ds

ship [08 052 028 013 021 -0.08

boat | 036 036 016 —0.20 —0.02 —0.18_

ocean | 1.01  0.72 036 -0.04 0.16 —0.21

wood | 0.97 012 020 103 062 041

tree | 012 -039 —0.08 090 041  0.49

U 1 2 3 4 5 /1 2 3 4 5
ship | -044 —030 057 058 025 1 [216 000 0.00 0.00 0.00
boat | -0.13 -033 -059 000 073 2 |000 159 0.00 0.00 0.00
ocean | —0.48 —051 —037 0.00 —0.61" 3 |0.00 0.0 0.0 0.00 0.00
wood | —0.70 035 015 —058 0.6 4 |0.00 0.0 0.0 0.00 0.00
tree | -026 065 —041 058 —0.09 5 |0.00 0.00 0.0 0.00 0.00
V| & d ds da ds ds

1 [-075 —028 —020 —045 —033 —0.12

2 | -029 -053 -019 063 022 041

3 028 —0.75 045 —0.20 012 —0.33

4 000 000 058 000 —058 058

5 | —053 029 063 019 041 —022



Example of C = UZV": All four matrices (unreduced)
C

dy dr d35 dy ds dp
ship 1 0 1 0 0 O
boat O 1 0 0 0 0 _
ocean|1 1 0 0 O 0
wood (1 O O 1 1 O
tree o 0 o0 1 0 1
Y 1 2 3 4 5 | 1 2 3 4 5

x
ship —0.44 —0.30 0.57 0.58 0.25 1216 0.00 0.00 0.00 0.00
boat | —0.13 —-0.33 —-0.59 0.00 0.73 2 10.00 159 0.00 0.00 0.00
ocean | —0.48 —0.51 —0.37 0.00 —-0.61 31000 000 1.28 0.00 0.00
wood | —0.70 0.35 0.15 —-0.58 0.16 4 10.00 0.00 0.00 1.00 0.00
tree —0.26 0.65 —0.41 0.58 —0.09 5 10.00 0.00 0.00 0.00 0.39
Vil 4 d ds da ds ds

1 —-0.75 —-0.28 —-0.20 —-0.45 -0.33 -0.12

2 —-0.29 —-0.53 -0.19 0.63 0.22 0.41

3 0.28 —0.75 0.45 —0.20 0.12 -0.33

4 0.00 0.00 0.58 0.00 —0.58 0.58

5 —0.53 0.29 0.63 0.19 041 -0.22

SVD is decomposition of C into a representation of the words, a representation of the
documents and a representation of the importance of the “semantic” dimensions.




Original matrix C vs. reduced G,

C di dr d3 dy ds dg
ship 1 0 1 0 0 O
boat |0 1 0 0 0 O
ocean | 1 1 0 0 0 O
wood |1 O 0 1 1 0
tree 0O 0 O 1 o0 1
C2 dy dp ds dy ds de
ship 0.85 0.52 0.28 0.13 0.21 -0.08
boat | 0.36 0.36 0.16 —-0.20 -0.02 -0.18
ocean | 1.01 0.72 0.36 —0.04 0.16 -0.21
wood | 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 -0.39 -0.08 0.90 0.41 0.49

We can view
G, as a two-
dimensional
representation
of the matrix
C. We have
performed a
dimensionality
reduction to
two
dimensions.

[



Exercise

C di dr d3 dy ds dg
ship 1 0 1 0 0 O
boat |0 1 0 0 0 O
ocean | 1 1 0 0 0 O
wood |1 O 0 1 1 0
tree 0O 0 O 1 o0 1
C2 dy dp ds dy ds de
ship 0.85 0.52 0.28 0.13 0.21 -0.08
boat | 0.36 0.36 0.16 —-0.20 -0.02 -0.18
ocean | 1.01 0.72 0.36 —0.04 0.16 -0.21
wood | 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 -0.39 -0.08 0.90 0.41 0.49

Compute the
similarity between
d> and ds for the
original matrix
and for the
reduced matrix.



Why the reduced matrix C, is better than C
C

di d» d3 di dy dg
ship 1 0 1 0 0 O
boat |0 1 0 0 0 O
ocean|1 1 0 O 0 O
wood |1 O O 1 1 O
tree 0O 0 0 1 o0 1
G d1 d> d3 dy ds ds

ship 0.85 0.52 0.28 0.13 0.21 —-0.08
boat | 0.36 0.36 0.16 -0.20 -0.02 -0.18
ocean | 1.01 0.72 0.36 —0.04 0.16 —0.21
wood | 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 -0.39 -0.08 0.90 0.41 0.49

» Similarity of d» and dj3 in the original space: 0.
» Similarity of d» and d3 in the reduced space:
0.52%0.284+0.36 %«0.16 + 0.72 % 0.36 + 0.12 % 0.20 + —0.39 * —0.08 ~ 0.52



word2vec learning via matrix factorization

» Collect and weight cooccurrence matrix

» Compute SVD of cooccurrence matrix

» Reduce the space

» embeddings = left singular vectors (left matrix)



embeddings = left singular vectors

u | 1 2 3 4 5

ship | —0.44 —0.30 0.00 0.00 0.00

boat | —0.13 —0.33 0.00 0.00 0.00

ocean | —0.48 —0.51 0.00 0.00 0.00

wood | —0.70  0.35 0.00 0.00 0.00

tree | —0.26  0.65 0.00 0.00 0.00

Yo |1 2 3 4 5

1 [216 000 0.00 0.00 0.00

2 /000 159 000 0.00 0.00

3 |0.00 0.00 000 000 0.00

4 1000 000 0.00 0.00 0.00

5 |0.00 0.00 000 0.00 0.00

VT i dy ds da ds de
1 [ -075 —028 —020 —-045 —033 —0.12
2 | -029 —-053 —019 063 022 041
3 000 000 000 000 000 0.00
4 000 000 000 000 000 0.00
5 000 000 000 000 000 0.00

Actually, we
only zero out
singular values
in . This has
the effect of
setting the
corresponding
dimensions in
Uand VT to
zero when
computing the
product C =
Uz VT m



Optimality

» SVD is optimal in the following sense.

> Keeping the k largest singular values and setting all others to
zero gives you the optimal approximation of the original
matrix C. Eckart-Young theorem

» Optimal: no other matrix of the same rank (= with the same
underlying dimensionality) approximates C better.

» Measure of approximation is Frobenius norm:
1€ Clle= /i (e — )2

» So SVD uses the “best possible” matrix.

» There is only one best possible matrix — unique solution
(modulo signs).

» Caveat: There is only a weak relationship between the
Frobenius norm and cosine similarity between documents. [



Embeddings (1): Vector space model (Salton, 1960s)
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Embeddings (2): Latent Semantic Indexing
(Deerwester, Dumais, Landauer ..., 1980s)
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Embeddings (3): SVD-based methods (Schitze, 1992)
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Embeddings (4):
Neural models (Bengio, Schwenk, ..., 2000s)

I T
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Embeddings (5): word2vec
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Embeddings (6):
SVD-based methods (Stratos et al., 2015)

2. Scale statistics to construct a matrix £ € R™*™:
SPECTRAL-TEMPLATE

Input: word-context co-occurrence counts #(w, ¢), dimen- #(w,e) fs=—
sion m, transformation method ¢, scaling method s, context #;(Ef'si) if s =reg
smoothing exponent o < 1, singular value exponent 3 < 1 e
Output: %BCLSIH(TU) eR™ forgcar.:h word 'u;pe [n] ¢ Que < { max (10g %%%)%l ;0 if s = ppmi
Definitions: #(w) := 3", #(w, ), #(c) :== 3, #(w,c), #(w,e) N(a) ro_
N(a) =3 #(e)" Jrwg@sV v ifs=cea
1. Transform all #(w, ¢), #(w), and #(c):
Perform rank-m SVD on 2 ~ ULV ' where & =
#() ift=— diag(o1,...,0m) is a diagonal matrix of ordered sin-
log(1+#(-)) ift=Ilog gular values oy > --- > g, > 0.
#() #()2/* it = two-thirds
#() ift=sqrt Define v(w) € R™ to be the w-th row of UL normal-

ized to have unit 2-norm.



Embeddings (7): GloVe
(Pennington, Socher, Manning, 2014)

14
J=" " AXy)(w] W+ bi+ bj — log X;)?
ij=1



Takeaway
Limitations of WordSpace

» WordSpace vectors can be inefficient.
(large number of parameters when used in deep learning)

» WordSpace vectors can be ineffective.
(due to randomness and noisiness of cooccurrence)



Takeaway
Definition of embedding

» Real-valued vector representation of word w
» Represents semantic and other properties of w
» Low dimensionality k (e.g., 50 < k < 1000)

» Dense (as opposed to sparse)



Takeaway
Embeddings my matrix factorization

» Compute PPMI cooccurrence matrix

» Decompose it using SVD

> Reduce left matrix U to d dimensions

» Reduced U is then the embeddings matrix.



Resources

» Chapter 18 of IIR at http://cislmu.org
P> Deerwester et al's paper on latent semantic indexing
» Paper on probabilistic LSI by Thomas Hofmann

» Neural Word Embeddings as Implicit Matrix Factorization.
Omer Levy and Yoav Goldberg. NIPS 2014.


http://cislmu.org
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