
Embeddings
Learned By

Matrix Factorization

Benjamin Roth; Folien von Hinrich Schütze

Center for Information and Language Processing, LMU Munich

Overview

WordSpace limitations

LinAlgebra review

Input matrix

Matrix factorization

Discussion

Demos

Embeddings

Definition
The embedding of a word w is a dense vector v⃗(w) ∈ Rk that
represents semantic and other properties of w. Typical values are
50 ≤ k ≤ 1000.

▶ In this respect, there is no difference to WordSpace: Both
embeddings and WordSpace vectors are representations of
words, primarily semantic, but also capturing other properties.

▶ Embeddings have much lower dimensionality than WordSpace
vectors.

▶ WordSpace vectors are sparse (most entries are 0),
embeddings dense (almost never happens that an entry is 0).

WordSpace

rich

poor0 50 100 150 200 250
0

50

100

150

200 silversilver

disease

society

Word representations:
Density and dimensionality

▶ WordSpace vectors are sparse and high-dimensional.
▶ In contrast, embeddings are dense and lower-dimensional.
▶ Why are embeddings potentially better?
▶ Embeddings are more efficient.
▶ Embeddings are often more effective.

Efficiency of embeddings

High
dimensionality
→ slow
training
The time to
train a neural
network is
roughly linear
in the
dimensionality
of word
vectors.

WordSpace vectors: Example for non-effectiveness

▶ Example: polarity classification
▶ Cooccurrence with “bad” indicates negative polarity.
▶ But corpora are often random and noisy and a negative word

may not have occurred with “bad”.
▶ Possible result:

Incorrect classification based on WordSpace vectors
▶ Embeddings are more robust and “fill out” missing data.
▶ Details: below

Effectiveness of embeddings: Polarity

v⃗(word)



high:0
cold:0
tree:1
good:2
white:0
bad:0

sweet:1
smelly:0



positivepositivepositive

neutralneutral

negativenegative

Effectiveness of embeddings: Polarity

v⃗(skunk)



high:0
cold:2
tree:2
good:0
white:1
bad:0

sweet:0
smelly:5



positivepositivepositive

neutralneutral

negativenegative

Effectiveness of WordSpace: Thought experiment

▶ Construct an example of a corpus and two words w1 and w2
occurring in it having the following properties:
▶ w1 and w2 are semantically related.
▶ The WordSpace vectors of w1 and w2 are not similar.

▶ Goal: Embeddings eliminate failure modes of WordSpace.

Best-known embedding model: word2vec skipgram

▶ word2vec skipgram is
▶ more effective than WordSpace

(embeddings and similarities of higher quality)
▶ more efficient than WordSpace

(lower dimensionality)

word2vec skipgram
predict, based on input word, a context word

word2vec skipgram
predict, based on input word, a context word

word2vec
learning = parameter estimation

▶ The embedding of a word is a real-valued vector ∈ Rk.
▶ The coordinates are

parameters that we need to learn/estimate from the corpus.
▶ Learning of a WordSpace model:

(i) count, then (ii) PPMI weighting
▶ For word2vec, learning is more complicated.
▶ Two different methods

▶ Embeddings learned via matrix factorization
▶ Embeddings learned via gradient descent

▶ These estimation methods are roughly equivalent.

Example of an embedding vector:
The numbers (or coordinates) are the parameters.

embedding of the work “skunk”:
(-0.17823, -0.64124, 0.55163, -1.2453, -0.85144, 0.14677, 0.55626, -0.22915,
-0.051651, 0.22749, 0.13377, -0.31821, 0.2266, -0.056929, -0.17589,
-0.077204, -0.093363, 1.2414, -0.30274, -0.32308, 0.29967, -0.0098437, -0.411,
0.4479, 0.60529, -0.28617, 0.14015, 0.055757, -0.47573, 0.093785, -0.36058,
-0.75834, -0.37557, -0.32435, -0.39122, -0.24014, 0.5508, -0.26339, 0.30862,
0.36182, 0.25648, 0.10642, -0.098591, -0.042246, 0.11275, 0.068252,
0.092793, -0.12239, 0.054094, 0.648, 0.30679, -0.38904, 0.32872, -0.22128,
-0.26158, 0.48044, 0.86676, 0.1675, -0.37277, -0.53049, -0.13059, -0.076587,
0.22186, -0.81231, -0.2856, 0.20166, -0.41941, -0.60823, 0.66289, -0.059475,
-0.14329, 0.0091092, -0.52114, -0.31488, -0.48999, 0.77458, -0.026237,
0.094321, -0.50531, 0.19534, -0.33732, -0.073171, -0.16321, 0.44695,
-0.64077, -0.32699, -0.61268, -0.48275, -0.19378, -0.25791, 0.014448, 0.44468,
-0.42305, -0.24903, -0.010524, -0.26184, -0.25618, 0.022102, -0.81199,
0.54065)

word2vec
learning = parameter estimation

▶ The embedding of a word is a real-valued vector ∈ Rk.
▶ The coordinates are

parameters that we need to learn/estimate from the corpus.
▶ Learning of a WordSpace model:

(i) count, then (ii) PPMI weighting
▶ For word2vec, learning is more complicated.
▶ Two different methods

▶ Embeddings learned via matrix factorization
▶ Embeddings learned via gradient descent

▶ These estimation methods are roughly equivalent.

word2vec parameter estimation:
Historical development
vs. presentation in this lecture

▶ Mikolov et al. (2013) introduce word2vec, estimating
parameters by gradient descent.
▶ Still the learning algorithm used by default and in most cases

▶ Levy and Goldberg (2014) show near-equivalence
to a particular type of matrix factorization.
▶ Important because it links two important bodies of research:

neural networks and distributional semantics
▶ More natural progression in this lecture:

distributional semantics
→ embedding learning via matrix factorization
→ embedding learning via gradient descent

word2vec skipgram:
Embeddings learned via gradient descent

word2vec parameter estimation:
Historical development
vs. presentation in this lecture

▶ Mikolov et al. (2013) introduce word2vec, estimating
parameters by gradient descent.
▶ Still the learning algorithm used by default and in most cases

▶ Levy and Goldberg (2014) show near-equivalence
to a particular type of matrix factorization.
▶ Important because it links two important bodies of research:

neural networks and distributional semantics
▶ More natural progression in this lecture:

distributional semantics
→ embedding learning via matrix factorization
→ embedding learning via gradient descent

word2vec skipgram:
Embeddings learned via matrix factorization

word2vec parameter estimation:
Historical development
vs. presentation in this lecture

▶ Mikolov et al. (2013) introduce word2vec, estimating
parameters by gradient descent.
▶ Still the learning algorithm used by default and in most cases

▶ Levy and Goldberg (2014) show near-equivalence
to a particular type of matrix factorization.
▶ Important because it links two important bodies of research:

neural networks and distributional semantics
▶ More natural progression in this lecture:

distributional semantics
→ embedding learning via matrix factorization
→ embedding learning via gradient descent

Dot product / scalar product

w⃗⃗c =
∑

i
wici

Example:  w1
w2
w3

 ·

 c1
c2
c3

 = w1c1 + w2c2 + w3c3

Linear algebra review: C = AB

B
1 -2

-1 2

A 1 1 0 0
2 1 1 -2

C11 = A11B11 + A12B21
C12 = A11B12 + A12B22
C21 = A21B11 + A22B21
C22 = A21B12 + A22B22

Linear algebra review: C = AB

B
0.7 0.3
0.2 0.8

A
0 1 0.2 0.8
0.2 0.8 0.3 0.7
0.3 0.7 0.35 0.65

C11 = A11B11 + A12B21
C12 = A11B12 + A12B22
C21 = A21B11 + A22B21
C22 = A21B12 + A22B22
C31 = A31B11 + A32B21
C32 = A31B12 + A32B22

Euclidean length of a vector d⃗

|⃗d| =

√√√√ n∑
i=1

d2
i

c⃗ and d⃗ are orthogonal iff

n∑
i=1

ci · di = 0

Exercise

VT d1 d2 d3 d4 d5 d6
1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

Show: column d1 has unit length:
√∑

i d2
i1 = 1

Show: columns d1, d2 are orthogonal:
∑

i di1 · di2 = 0
0.752 + 0.292 + 0.282 + 0.002 + 0.532 = 1.0059
−0.75 ∗ −0.28 +−0.29 ∗ −0.53 + 0.28 ∗ −0.75 + 0.00 ∗ 0.00 +
−0.53 ∗ 0.29 = 0

Exercise

VT d1 d2 d3 d4 d5 d6
1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

Show: column d1 has unit length:
√∑

i d2
i1 = 1

Show: columns d1, d2 are orthogonal:
∑

i di1 · di2 = 0

Outline of this section

▶ Recall:
We learn embedding parameters by matrix factorization.

▶ We need an input matrix for matrix factorization.
▶ Brief recap on how to create the input matrix
▶ Also: link to information retrieval
▶ This type of “technology” comes from information retrieval.
▶ Brief overview of information retrieval setting

Vector representations:
Words vs. Documents/Queries

▶ Statistical NLP & Deep learning:
Embeddings as model for word similarity

▶ Information retrieval:
Vector representations as model of query-document similarity

▶ Simple search engine:
▶ User enters query.
▶ Query is transformed into query vector.
▶ Documents are transformed into document vectors.
▶ Order document vectors according to similarity to query
▶ Return ranked list of documents to user:

The documents with highest similarity to query.

Basis for WordSpace: Cooccurrence→ Similarity
rich

poor0 50 100 150 200 250
0

50

100

150

200
gold

silver

disease

society

The similarity between two words is the cosine of the angle
between them.
Small angle: silver and gold are similar. Medium-size angle: silver
and society are not very similar. Large angle: silver and disease are
even less similar.

Documents ranked according to similarity to query

Words ranked according to similarity to query word

1.000 silver 0.865 bronze 0.842 gold 0.836 medal 0.826 medals
0.761 relay 0.740 medalist 0.737 coins 0.724 freestyle 0.720 metre
0.716 coin 0.714 copper 0.712 golden 0.706 event 0.701 won 0.700
foil 0.698 Winter 0.684 Pan 0.680 vault 0.675 jump

Setup for cooccurrence count matrix
Dimension words (w2) and points/vectors (w1)

w2
rich poor silver society disease

rich
poor

w1 silver
society
disease

Cooccurrence count (CC) matrix

w2
rich poor silver society disease

rich CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)
poor CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)

w1 silver CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)
society CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)
disease CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)

PPMI matrix C
This is the input to matrix factorization,
which will compute word embeddings.

w2
rich poor silver society disease

rich PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2)
poor PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2)

w1 silver PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2)
society PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2)
disease PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2) PPMI(w1,w2)

PPMI: Weighting of raw cooccurrence counts

▶ PMI: pointwise mutual information
▶

PMI(w, c) = log
P(wc)

P(w)P(c)
▶ PPMI =

positive pointwise mutual information
▶ PPMI(w, c) = max(0,PMI(w, c))
▶ More generally (with offset k):

PPMI(w, c) = max(0,PMI(w, c)−k)

Information Retrieval: Word-document matrix

doc 1 doc 2 doc 3 doc 4 doc 5 query
anthony 5.25 3.18 0.0 0.0 0.0 0.35
brutus 1.21 6.10 0.0 1.0 0.0 0.0
caesar 8.59 2.54 0.0 1.51 0.25 0.0
calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 0
…

Matrix factorization: Overview

▶ We will decompose the word-document matrix into a product
of matrices.

▶ The particular decomposition we’ll use: singular value
decomposition (SVD).

▶ SVD: C = UΣVT (where C = word-document matrix)
▶ We will then use the SVD to compute a new, improved

word-document matrix C′.
▶ We’ll get better query-document similarity values out of C′

(compared to C).
▶ Using SVD for this purpose is called latent semantic indexing

or LSI.

Matrix factorization: Embeddings

▶ We will decompose the cooccurrence matrix into a product of
matrices.

▶ The particular decomposition we’ll use: singular value
decomposition (SVD).

▶ SVD: C = UΣVT (where C = cooccurrence matrix)
▶ We will then use the SVD to compute a new, improved

cooccurrence matrix C′.
▶ We’ll get better word-word similarity values out of C′

(compared to C).

Example of C = UΣVT: The matrix C

C d1 d2 d3 d4 d5 d6
ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1
We use a non-weighted matrix here to simplify the example.

Example of C = UΣVT: The matrix U
U 1 2 3 4 5
ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09
One row per word, one column per min(M,N) where M is the
number of words and N is the number of documents.
This is an orthonormal matrix: (i) Row vectors have unit length.
(ii) Any two distinct row vectors are orthogonal to each other.
Think of the dimensions as “semantic” dimensions that capture
distinct topics like politics, sports, economics. 2 = land/water
Each number uij in the matrix indicates how strongly related word i
is to the topic represented by semantic dimension j.

Example of C = UΣVT: The matrix Σ

Σ 1 2 3 4 5
1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 1.28 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.00 0.39

This is a square, diagonal matrix of dimensionality
min(M,N)×min(M,N).
The diagonal consists of the singular values of C.
The magnitude of the singular value measures the importance of
the corresponding semantic dimension.
We’ll make use of this by omitting unimportant dimensions.

Example of C = UΣVT: The matrix VT

VT d1 d2 d3 d4 d5 d6
1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22
One column per document, one row per min(M,N) where M is the
number of words and N is the number of documents.
Again: This is an orthonormal matrix: (i) Column vectors have
unit length. (ii) Any two distinct column vectors are orthogonal to
each other.
These are again the semantic dimensions from matrices U and Σ
that capture distinct topics like politics, sports, economics.
Each number vij in the matrix indicates how strongly related
document i is to the topic represented by semantic dimension j.

Example of C = UΣVT: All four matrices (unreduced)
C d1 d2 d3 d4 d5 d6
ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

=

U 1 2 3 4 5
ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09

×

Σ 1 2 3 4 5
1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 1.28 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.00 0.39

×

VT d1 d2 d3 d4 d5 d6
1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22
SVD is decomposition of C into a representation of the words, a representation of the
documents and a representation of the importance of the “semantic” dimensions.

SVD: Summary

▶ We’ve decomposed the word-document matrix C into a
product of three matrices: UΣVT.

▶ The word matrix U – consists of one (row) vector for each
word

▶ The document matrix VT – consists of one (column) vector
for each document

▶ The singular value matrix Σ – diagonal matrix with singular
values, reflecting importance of each dimension

▶ Next: Why are we doing this?

Property of SVD that we exploit here

▶ Key property:
Each singular value tells us how important its dimension is.

▶ By setting less important dimensions to zero, we keep the
important information, but get rid of the “details”.

▶ These details may
▶ be noise – in that case, reduced SVD vectors are a better

representation because they are less noisy.
▶ make things dissimilar that should be similar – again, reduced

SVD vectors are a better representation because they represent
similarity better.

▶ Analogy for “fewer details is better”
▶ Image of a blue flower
▶ Image of a yellow flower
▶ Omitting color makes is easier to see the similarity

Reducing the dimensionality to 2
U 1 2 3 4 5
ship −0.44 −0.30 0.00 0.00 0.00
boat −0.13 −0.33 0.00 0.00 0.00
ocean −0.48 −0.51 0.00 0.00 0.00
wood −0.70 0.35 0.00 0.00 0.00
tree −0.26 0.65 0.00 0.00 0.00
Σ2 1 2 3 4 5
1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00

VT d1 d2 d3 d4 d5 d6
1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

Actually, we
only zero out
singular values
in Σ. This has
the effect of
setting the
corresponding
dimensions in
U and VT to
zero when
computing the
product C =
UΣVT.

Reducing the dimensionality to 2
C2 d1 d2 d3 d4 d5 d6
ship 0.85 0.52 0.28 0.13 0.21 −0.08
boat 0.36 0.36 0.16 −0.20 −0.02 −0.18
ocean 1.01 0.72 0.36 −0.04 0.16 −0.21
wood 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 −0.39 −0.08 0.90 0.41 0.49

=

U 1 2 3 4 5
ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09

×

Σ2 1 2 3 4 5
1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00

×

VT d1 d2 d3 d4 d5 d6
1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

Example of C = UΣVT: All four matrices (unreduced)
C d1 d2 d3 d4 d5 d6
ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

=

U 1 2 3 4 5
ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
wood −0.70 0.35 0.15 −0.58 0.16
tree −0.26 0.65 −0.41 0.58 −0.09

×

Σ 1 2 3 4 5
1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 1.28 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.00 0.39

×

VT d1 d2 d3 d4 d5 d6
1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22
SVD is decomposition of C into a representation of the words, a representation of the
documents and a representation of the importance of the “semantic” dimensions.

Original matrix C vs. reduced C2 = UΣ2VT

C d1 d2 d3 d4 d5 d6
ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

C2 d1 d2 d3 d4 d5 d6
ship 0.85 0.52 0.28 0.13 0.21 −0.08
boat 0.36 0.36 0.16 −0.20 −0.02 −0.18
ocean 1.01 0.72 0.36 −0.04 0.16 −0.21
wood 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 −0.39 −0.08 0.90 0.41 0.49

We can view
C2 as a two-
dimensional
representation
of the matrix
C. We have
performed a
dimensionality
reduction to
two
dimensions.

Exercise
C d1 d2 d3 d4 d5 d6
ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1

C2 d1 d2 d3 d4 d5 d6
ship 0.85 0.52 0.28 0.13 0.21 −0.08
boat 0.36 0.36 0.16 −0.20 −0.02 −0.18
ocean 1.01 0.72 0.36 −0.04 0.16 −0.21
wood 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 −0.39 −0.08 0.90 0.41 0.49

Compute the
similarity between
d2 and d3 for the
original matrix
and for the
reduced matrix.

Why the reduced matrix C2 is better than C
C d1 d2 d3 d4 d5 d6
ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
wood 1 0 0 1 1 0
tree 0 0 0 1 0 1
C2 d1 d2 d3 d4 d5 d6
ship 0.85 0.52 0.28 0.13 0.21 −0.08
boat 0.36 0.36 0.16 −0.20 −0.02 −0.18
ocean 1.01 0.72 0.36 −0.04 0.16 −0.21
wood 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 −0.39 −0.08 0.90 0.41 0.49
▶ Similarity of d2 and d3 in the original space: 0.
▶ Similarity of d2 and d3 in the reduced space:

0.52 ∗ 0.28 + 0.36 ∗ 0.16 + 0.72 ∗ 0.36 + 0.12 ∗ 0.20 +−0.39 ∗ −0.08 ≈ 0.52

word2vec learning via matrix factorization

▶ Collect and weight cooccurrence matrix
▶ Compute SVD of cooccurrence matrix
▶ Reduce the space
▶ embeddings = left singular vectors (left matrix)

embeddings = left singular vectors
U 1 2 3 4 5
ship −0.44 −0.30 0.00 0.00 0.00
boat −0.13 −0.33 0.00 0.00 0.00
ocean −0.48 −0.51 0.00 0.00 0.00
wood −0.70 0.35 0.00 0.00 0.00
tree −0.26 0.65 0.00 0.00 0.00
Σ2 1 2 3 4 5
1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00

VT d1 d2 d3 d4 d5 d6
1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

Actually, we
only zero out
singular values
in Σ. This has
the effect of
setting the
corresponding
dimensions in
U and VT to
zero when
computing the
product C =
UΣVT.

Optimality

▶ SVD is optimal in the following sense.
▶ Keeping the k largest singular values and setting all others to

zero gives you the optimal approximation of the original
matrix C. Eckart-Young theorem

▶ Optimal: no other matrix of the same rank (= with the same
underlying dimensionality) approximates C better.

▶ Measure of approximation is Frobenius norm:
||C − C′||F =

√∑
i
∑

j(cij − c′ij)2

▶ So SVD uses the “best possible” matrix.
▶ There is only one best possible matrix – unique solution

(modulo signs).
▶ Caveat: There is only a weak relationship between the

Frobenius norm and cosine similarity between documents.

Embeddings (1): Vector space model (Salton, 1960s)

rich

poor0 50 100 150 200 250
0

50

100

150

200
gold

silver

disease

society

Embeddings (2): Latent Semantic Indexing
(Deerwester, Dumais, Landauer …, 1980s)

Embeddings (3): SVD-based methods (Schütze, 1992)

Embeddings (4):
Neural models (Bengio, Schwenk, …, 2000s)

Embeddings (5): word2vec

Embeddings (6):
SVD-based methods (Stratos et al., 2015)

Embeddings (7): GloVe
(Pennington, Socher, Manning, 2014)

J =
V∑

i,j=1
f(Xij)(wT

i w̃j + bi + b̃j − logXij)
2

Takeaway
Limitations of WordSpace

▶ WordSpace vectors can be inefficient.
(large number of parameters when used in deep learning)

▶ WordSpace vectors can be ineffective.
(due to randomness and noisiness of cooccurrence)

Takeaway
Definition of embedding

▶ Real-valued vector representation of word w
▶ Represents semantic and other properties of w
▶ Low dimensionality k (e.g., 50 ≤ k ≤ 1000)
▶ Dense (as opposed to sparse)

Takeaway
Embeddings my matrix factorization

▶ Compute PPMI cooccurrence matrix
▶ Decompose it using SVD
▶ Reduce left matrix U to d dimensions
▶ Reduced U is then the embeddings matrix.

Resources

▶ Chapter 18 of IIR at http://cislmu.org
▶ Deerwester et al.’s paper on latent semantic indexing
▶ Paper on probabilistic LSI by Thomas Hofmann
▶ Neural Word Embeddings as Implicit Matrix Factorization.

Omer Levy and Yoav Goldberg. NIPS 2014.

http://cislmu.org

	WordSpace limitations
	LinAlgebra review
	Input matrix
	Matrix factorization
	Discussion
	Demos

